Code No.: 16245 (B) N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (CSE-AIML) VI-Semester Main Examinations, May/June-2023

Deep Learning

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	What are the multiple learning components in Deep Learning?	2	1	1	1,2
2.	Draw the computation graph for Linear Regression with weight decay.	2	3	1	1,3
3.	Why do we inject noise to input data in DL?	2	2	2	1,2
4.	Which regularization method leads to weight sparsity? Give reasons.	2	3	2	1,3
5.	What is the effect of Zero padding? Show with and example.	2	2	3	1,2
6.	Suppose you have 5 convolutional kernel of size 7 x 7 with zero padding and stride 1 in the first layer of a convolutional neural network. You pass an input of dimension 228 x 228 x 3 through this layer. What are the dimensions of the data which the next layer will receive?	2	3	3	1,3
7.	Consider the below diagram and compute the output using SoftMax and which class has more accuracy?	2	3	4	1,2
	X_1 X_2 X_3 X_4 X_4 X_4 X_5 X_4 X_5 X_6 X_6 X_6 X_6 X_6 X_6 X_6 X_6 X_7 X_8 X_8 X_8 X_9				
8.	Compute the Loss Function for Recurrent Neural Network	2	2	4	1,3
9.	How to choose the right optimization algorithm?	2	3	5	1,2
10.	What is Generative Adversarial Networks? Explain with an example.	2	1	5	1,3

3

1

1,2

Part-B $(5 \times 8 = 40 \text{ Marks})$

11. a) The following diagram represents a feed-forward neural network with one hidden layer:

Weight on connection between nodes i and j is denoted by wij, such as w13 is the weight on the connection between nodes 1 and 3. The following table lists all the weights in the network:

$w_{13} = -2$	$w_{35} = 1$
$w_{23} = 3$	$w_{45} = -1$
$w_{14} = 4$	$w_{36} = -1$
$w_{24} = -1$	$w_{46} = 1$

Each of the nodes 3, 4, 5 and 6 uses the following activation function: $\phi(v) = 1$ if $v \ge 0$ or 0 otherwise. where v denotes the weighted sum of a node. Each of the input nodes (1 and 2) can only receive binary values (either 0 or 1). Calculate the output of the network (y5 and y6) for each of the input patterns:

Pattern:	P_1	P_2	P_3	P_4
Node 1:	0	1	0	1
Node 2:	0	0	1	1

Prove that non-linear XOR data is separable by using deep feed forward network?

- 12. a) What is output Units? Explain the Bernoulli output distribution along with cost function used.
 - What is Lagrange formulation? How is it used in Constrained optimization?
- 13. a) Why parameter sharing utilized in CNN? Give reasons with neat diagram.

4 3 1 1,3

Contd	2
Conta	2

2

4

1,2

1,3

1,2

b)	Consider the	Convoluti t			0 10	1243	(D) IV
	column below parameters at (e.g. (128,128 Notation:	v. Fill in the shape of the each layer. You can writ (3).	ork defined by the layers in the output volume and the number the shapes in the numpy for	e left er of ermat	4	3	3
		1					
	width equal to	denotes a convolutional la	yer with N filters with height				
	• POOL 2 dame	5. Padding is 2, and stride	is 1.	and			
	o o de	ies a Zx/ may-nooling 1					
	1 C-14 denotes	s a fully-connected layer w	ith N neurons	ng.			
	Layer	Activation Volume Dimensions					
	Input	$32 \times 32 \times 1$	Number of parameters				
	CONV5-10		0				
	POOL2						
	CONV5-10						
	POOL2						
	FC10						
14. a) V							
b) C	onstruct the	Encode	of RNN? Explain with ne	at 4	1	4	1,2
5. a) W	rite about Adag	variable length sequence	Explain with Neat Diagram	ig 4	3	4	1,3
b) Di	fferentiate Ada	m and DAGE	Explain with Neat Diagram	4	2	5	1.0
		and Idvid I Intimize		1			1,2
dia	gram the Expo	onential advantage of dee	rs per network by using below	4	3	5	1,3
	Brain.		by using below	v 4	3	1	1,2
b) Wha	ot is Day	Figure					
VIII VIII	it is Data augme	entation? Explain with diag	gram its usage				
	110 01	HE MINWING.		4	2	2	1,3
a) Com	pare the locall olution with near	y connected layers, tiled at diagram	convolution, and standard	4	3	3	
applie	ain usage of cation.	Bidirectional RNN wit	h functions used in the	4	1		1,3
c) Write	an Algorithm f	for stochastic Gradient Des			1	4	1,2,
-		oradient Des	cent will to)
M: Mark	S; L: Bloom's T	axonomy Level; CO; Course	cent with Momentum	4	2	5	

PO: Programme Outcome

<u>i)</u>	Blooms Taxonomy Level – 1	PO: Programme Outo
11)	Blooms Taxonomy Level – 2	20%
iii)	Blooms Taxonomy Level – 3 & 4	35%
	20,01-3 & 4	45%
	ded to	